Monday, June 30, 2008

Why Cavemen Drew on Cave Walls

Pre-historic cavemen already knew what the human brain is not good in - it is not good in memorizing large amount of information and it is not good in doing procedures. They drew on cave walls to help them retain information. They created simple machines to carry out procedures. Mankind's subsequant endeavour in inventing paper and creating more and more powerful computer storage devices as well as our attempt to invent increasingly complex and sophisticated machines only tell us one thing - the human brain is not superior in memorizing and doing procedures. Making children learn mathematics by memorizing and doing procedures result in two things - they don't do well or they struggle, only to do well superficially. Our brain is a visual brain. Our brain is good at spotting patterns and trends and coming to a general conclusion. Get children to visualize. Get them to look for patterns and make connections when they learn mathematics. These are their strengths. In turn, these abilities become increasingly more and more powerful. Mathematics is about visualization and looking for patterns. Mathematics is not about memorization and procedures.

Sunday, June 29, 2008

Teaching in Chile

The children were asked to arranged numbers one to five in a certain arrangement such that the total of the three horizontal numbers and the total of the three vertical numbers are the same. Later, the sets of numbers were changes to two to six, three to seven and four to eight. Each time, the children were asked to tell what the common total was. For each set of numbers, there were three possible totals. Finally, the children were asked to predict the possible totals if the sets of numbers were five to nine and ten to fourteen.

During my visit to Universidad del Pacifico, I had the good fortune to use this problem with a third-grade class in a public school and a fourth grade class in a private school, both in Chile. I have taught many lessons using such and other problems to primary school children in Singapore. In the public school, the children were less confident. In the private school, they were more so. In Singapore, some classes were closer to the class in the public school and others were more similar to the class in the private school. In some of these classes, the children had stronger basics. In others, the basics were not quite in place yet. In Singapore, the children spoke in English. In Chile, they spoke mostly in Spanish. Singapore students often performed well in international comparative study. Chilean students, less so.


But the potential of the Chilean children was not any less than that of Singaporean children. The Chilean kids were as engaged as the kids in Singapore. They were just as enthusiastic in trying to solve the problems. Their faces lit up when they managed. They looked puzzled when two of their friends gave conflicting information. They discovered for themselves who was right. They did all these and more, just like Singaporean kids.


I learnt that kids everywhere have the same potential. I believe that given the same opportunities kids everywhere will reach the same pinnacle.

EL Mercurio News

Sunday, June 15, 2008

About mathz4kidz

mathz4kidz implements programs that are consistent with the philosophy of SingaporeMath. The vision of mathz4kidz is Where A Child Grows to Be Creative & Critical Problem Solvers which emphasizes holistic development of children through a rigorous mathematics program. The overarching ACT framework directs the development and implementation of teaching materials. ACT refers to the three key competencies that mathz4kidz hopes children will develop - Attitude, Communication and Thinking. mathz4kidz's long-term goals include to develop research-based mathematics programs based on SingaporeMath.





About SingaporeMath

SingaporeMath has gained an international reputation for helping average students attain high achievement levels and enjoy mathematics. Some prominent features of SingaporeMath includes the emphasis on complex problem solving and concept development through the concrete-pictorial-abstract approach. A prominent feature of SingaporeMath is simple explanations for difficult concepts.

SingaporeMath's emphasis on the development of students' intellectual competencies is consistent with the importance placed on nurturing knowledge workers and people who can participate fully in an increasingly technological world. Textbooks based on SingaporeMath have been adopted in many countries around the world. As of this year, there is even a Standards Edition of a K-5 textbook series based on SingaporeMath.

TIMSS has consistently found that Singapore students perform well in mathematics. A 2005 study by American institute for research (AIR) found that SingaporeMath Grade 6 problems are "more challenging than the released items on the U.S. Grade 8 National Assessment of Education Progress (p.xiii)". It was also found that SingaporeMath "are rich with problem-based development (p.xii)" instead of focusing on the mechanics of mathematics and the application of definitions and formulae to routine problems. A 2007 article in Educational Leadership concluded that "using the bar model approach, Singapore textbooks enable students to solve difficult math problems - and learn how to think symbolically ".

This emphasis on visual methods in SingaporeMath could be a contributing factor to why Singapore students are able to sustain their achievement level from Grade 4 to Grade 8.